Production Flux of Sea Spray Aerosol
نویسندگان
چکیده
[1] Knowledge of the size‐ and composition‐dependent production flux of primary sea spray aerosol (SSA) particles and its dependence on environmental variables is required for modeling cloud microphysical properties and aerosol radiative influences, interpreting measurements of particulate matter in coastal areas and its relation to air quality, and evaluating rates of uptake and reactions of gases in sea spray drops. This review examines recent research pertinent to SSA production flux, which deals mainly with production of particles with r80 (equilibrium radius at 80% relative humidity) less than 1 mm and as small as 0.01 mm. Production of sea spray particles and its dependence on controlling factors has been investigated in laboratory studies that have examined the dependences on water temperature, salinity, and the presence of organics and in field measurements with micrometeorological techniques that use newly developed fast optical particle sizers. Extensive measurements show that water‐insoluble organic matter contributes substantially to the composition of SSA particles with r80 < 0.25 mm and, in locations with high biological activity, can be the dominant constituent. Order‐of‐magnitude variation remains in estimates of the size‐dependent production flux per white area, the quantity central to formulations of the production flux based on the whitecap method. This variation indicates that the production flux may depend on quantities such as the volume flux of air bubbles to the surface that are not accounted for in current models. Variation in estimates of the whitecap fraction as a function of wind speed contributes additional, comparable uncertainty to production flux estimates.
منابع مشابه
A sea spray aerosol flux parameterization encapsulating wave state
A new sea spray source function (SSSF), termed Oceanflux Sea Spray Aerosol or OSSA, was derived based on in-situ sea spray aerosol measurements along with meteorological/physical parameters. Submicron sea spray aerosol fluxes derived from particle number concentration measurements at the Mace Head coastal station, on the west coast of Ireland, were used together with open-ocean eddy correlation...
متن کاملEddy covariance measurements of sea spray particles over the Atlantic Ocean
Most estimates of sea spray aerosol source functions have used indirect means to infer the rate of production as a function of wind speed. Only recently has the technology become available to make high frequency measurements of aerosol spectra suitable for direct eddy correlation determination of the sea spray particle flux. This was accomplished in this study by combining a newly developed fas...
متن کاملModeling coastal aerosol transport and effects of surf-produced aerosols on processes in the marine atmospheric boundary layer
The Coastal Aerosol Transport (CAT) model was developed to study the evolution of aerosol particle size distributions and composition in the coastal environment. The model simulates such processes as particle production at the sea surface, mixing of particles through the boundary layer by turbulent diffusion, gravitational settling, and dry deposition. The model is initialized at the shoreline ...
متن کاملReduced efficacy of marine cloud brightening geoengineering due to in-plume aerosol coagulation: parameterization and global implications
The intentional enhancement of cloud albedo via controlled sea-spray injection from ships (marine cloud brightening) has been proposed as a possible method to control anthropogenic global warming; however, there remains significant uncertainty in the efficacy of this method due to, amongst other factors, uncertainties in aerosol and cloud microphysics. A major assumption used in recent cloudand...
متن کاملProgressing the understandings of sea spray aerosol through model systems and nem Methods of analysis
Currently, there exists a great deal of uncertainty regarding atmospheric aerosols and the role that they play within the Earth’s atmosphere. It is known that atmospheric aerosols can play a role in the Earth’s climate by scattering and absorbing solar radiation or acting as a cloud condensation nuclei. The purpose of this work is to obtain an improved understanding of the chemistry of atmosphe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010